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Abstract – We present a recurrent neural network system 

designed to predict future angular acceleration of the human 
head from current angular acceleration data. These predictions 
can be used to supplement head tracking in virtual 
environments in order to reduce latency and increase tracking 
accuracy, thus enhancing the user’s performance and comfort. 
 

I. INTRODUCTION 
 

With increasingly smaller and faster computing 
machinery, the use of virtual environments (VE) in everyday 
applications is becoming more a matter of fact, rather than a 
matter of science fiction. However, using virtual 
environments is not without its difficulties. One of the most 
notable problems facing current VE applications is the 
perceptible latency that is experienced by the user as the 
computer displays are updated. Such perceptible latency has 
been shown to have undesirable effects on users of virtual 
environments, including a lack of accuracy during tracking 
tasks, motion sickness, and loss of immersion [1]. Ellis, et al, 
have shown that visual latency, more than spatial sensor 
distortion or low update rates, is the primary cause of RMS 
tracking errors [2]. This latency comes in three different 
forms – rendering lag, application-dependent processing lag, 
and user input device lag [3]. Rendering lag is due to the 
amount of time it takes for the computer screen to be updated. 
Application-dependent processing lag is the latency that 
arises from the computation of the three-dimensional model. 
This latency is entirely dependent on the complexity of the 
model. Finally, user input device lag is the lag introduced 
from the necessary communication between the position and 
orientation tracking system and the VE application. Because 
of its relevance to our current work, in this paper we will only 
consider this final type of lag. 

User input device lag can range between 10ms and 120 
ms [3]. Because of the detrimental effects that often result 
from lag in virtual environments, many motion trackers 
implement a prediction mechanism within the tracker itself 
that attempts to compensate for the device lag. This 
prediction mechanism is often no more than a crude 
averaging and extrapolation from the current movement to 
the next movement in time. While such a scheme can be 
useful and effective in certain situations, it manifests serious 
problems if the user moves quickly or changes velocity. 
Thus, in order to avoid experiencing the cyber-sickness 
caused by lag, the user must make slow, deliberate 
movements [4]. Also, using these approaches, predictions out 
to a useful range (i.e., 20–40 ms) are subject to very large 
errors. If differential acceleration data (as generated by linear 

accelerometers or rate gyros) is used, more accurate 
extrapolation systems can be created because of the higher 
resolution of the original data. We will discuss these 
extrapolation methods in more detail in Section III.  

In an effort to improve upon the prediction within the 
tracker, itself, other prediction mechanisms have been 
implemented which make use of Kalman filters. For instance, 
Friedmann, et al, used Kalman filters to predict the position, 
velocity, and rotations of a Polhemus sensor [4]. Their results 
show that accurate predictions can be made except at points 
where the user changes acceleration and/or direction very 
sharply. Such unexpected changes were also the major cause 
of problems for the on-board prediction method of the 
trackers themselves. Friedmann, et al, dealt with this problem 
by using a multiple model approach. In this approach, several 
different Kalman filters were created to accommodate 
different types of user movements. At each instance of 
prediction, the filter with the maximum likelihood was used. 

While the above study dealt with both positional 
prediction and rotational prediction, it has been shown that 
users are much more affected by rotational latency than 
positional latency. This has been attributed to two main 
causes. First, because of the limitations of most motion 
trackers, positional changes are limited to a small range. 
Thus, users tend to make such changes infrequently. Second, 
rotational changes generally cause more noticeable changes 
in the scene than do positional changes [5]. Because of this 
fact, it seems reasonable to focus current motion prediction 
research to deal with only the rotational accelerations of the 
user. In fact, Ellis, et al, carried out an experiment in which 
Kalman filters were used to predict only the angular 
accelerations of user head motions within a virtual 
environment [6]. These angular accelerations are based on 
approximations using the Polhemus tracker measurements, 
not on actual rate gyro data which would be much more 
accurate. 

Using differential acceleration data collected from rate 
gyros is indeed an extremely powerful approach to head 
movement prediction. However, to the best of our 
knowledge, linear approximation techniques such as Kalman 
filters have only been applied to approximated acceleration 
data. In an effort to make use of collected differential 
acceleration data and to move beyond the linear filtering 
techniques that have been applied to date, we present a 
recurrent neural network approach to the problem of angular 
acceleration prediction. However, rather than using angular 
acceleration about all three axes, we constrain the problem by 
using angular acceleration about the z-axis only. (This would 
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be rotation about the vertical.) This constraint was made to 
allow us to focus more closely on the other aspects of the 
work, such as choice of network parameters and types of 
error measurements. Also, because users within virtual 
environments perform such rotations more often than 
rotations about the x- or y- axes, most of the information 
about user motion is carried by this variable. Because of this, 
a neural network trained on z-axis rotational data could be 
easily extended to encompass the x- and y- axis information 
as well. In this way, where many different Kalman filters may 
be needed to accurately model a majority of user head 
motions, one neural network would suffice. 

Table 1 

Summary of Features 

The layout of the remainder of the paper is as follows. In 
Section II, we discuss the experimental setup for data 
collection and outline the particular neural network 
architecture chosen. In Section III, we present our findings 
along with a discussion of the error measurement that was 
used. We also contrast our results against a widely used 
prediction system embedded within a motion tracker. Finally, 
in Section IV we draw our conclusions. 

 
II. METHODS 

 
A. Experimental Setup 
 

An InterSense IS-600-series motion tracker was used to 
collect angular acceleration data from two different subjects. 
The sampling rate for both subjects was set to 160 Hertz. 
Each subject was fitted with a helmet containing the inertial 
sensors and was instructed to perform movements from a pre-
defined set. Such movements included abrupt movements 
from right to left; smooth, continuous movements from right 
to left; smooth movements from right to left with a pause in 
the center; and abrupt movements from right to left with a 
pause in the center. These movement types were chosen to be 
representative of head motion that would be likely within a 
virtual environment. For instance, the abrupt motions were 
chosen to be similar to startled movements, and the 
continuous motions were chosen to be similar to casual 
scanning movements. 

Two other motions were also included that contained 
some rotation about the vertical along with rotation about the 
other two axes. These were movements in a clockwise circle 
(as if the nose were following the hand of a clock), movement 
along an upper-right to lower-left diagonal, and movements 
along an upper-left to lower-right diagonal. These movements 
were included in order to test the neural network’s ability to 
generalize to different movements. 

After each experiment, the angular acceleration data 
collected was saved into a file for use with the learning 
system. In this way, all training could be done off-line 
without the need for more data collection. 

 
B. Feature Description 

 
No learning system is effective without information-rich 

inputs into that system. This means that the extraction of 
appropriate features that characterize the inputs is essential 

for success. The set of angular acceleration-based features 
that we used to produce the results discussed below are 
summarized in Table 1. The moving average, average slope, 
average frequency, and average period are self-explanatory. 
The number of zero-crossings at time t, Zt, is a measure of the 
frequency of the curve. It is defined to be the number of 
instances where the angular velocity is 0 within a 25 ms 
window. It is defined by the following equation: 

 

∑
−=

=
t

wti
t izZ )( , where   (1) 



 =

=
otherwise

taif
tz

0
0)(1

)(

 
The curve complexity is a feature that attempts to measure 
the “shape” of the curve [7]. Equation 2 provides the 
definition of this feature (referred to as the “waveform” in 
[7]): 
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The cumulative, non-overlapping gradient was found to be 
the most useful feature for predicting the angular acceleration 
data. Equation 3 defines this feature: 
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This feature provides a measure of total change at the current 
time from all past movements. It provides a running measure 
of change per full movement. This is because the measure 
“resets” itself whenever the angular acceleration reaches zero. 

Feature 
Moving Average 

Description 
Average angular velocity within a 
25 ms window 

Average Slope 
 

Average slope of angular velocity 
within a 25 ms window 

Number of Zero-crossings 

Curve Complexity 

Cumulative, Non-overlapping 
Gradient 

Number of instances where the 
angular velocity was 0 within a 25 
ms window

Average Frequency Instantaneous frequency at each 
time-step 

Average amount of time between 
zero-crossings within a 25 ms 
window

Average Period 

Cumulative measure of the 
gradient using non-overlapping 
1.5 ms windows

Sum across instantaneous 
gradients within a 25 ms window 
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This is very useful when trying to predict on a movement-by-
movement basis. (In each of these equations, the w term 
represents the window size.) 

We found that the seven features presented above 
provided a good representation of the dynamics and 
characteristics of the raw angular acceleration data. As such, 
these features were normalized and used as the inputs into the 
recurrent neural network. 

 
C. Network Architecture 

 
A recurrent neural network known as an Elman neural 

network was used as our learning system. The Elman neural 
network is based on the back-propagation algorithm.  It 
includes the typical feed-forward connectivity with the 
addition of a recurrent connection from the output of the 
hidden layer at time t to the input of the hidden layer at time 
t+1. This recurrent connection gives the network an 
exponential “memory” of past events [8]. This “memory” 
makes the Elman network very effective in learning time-
sequential patterns, such as the type we see in angular 
acceleration data. 

The Elman network was implemented in Matlab 6.1 using 
the Neural Network Toolbox. The appropriate parameters for 
the network, which include the number of hidden neurons, 
the training function, the transfer functions, etc., were 
determined experimentally. The final parameters chosen were 
as follows: 
• Number of hidden neurons – 15 
• Training function – BFGS quasi-Newton method 
• Transfer functions – Hyperbolic tangent sigmoid 

function for hidden neurons; linear function for output 
neurons 

• Search function – One-dimensional minimization using 
the method of Charalambous [9] 

• Weights initialization function – Nguyen-Widrow layer 
initialization function 

This set of network parameters was used to generate all of the 
data presented in the remainder of the paper. 
 

III. RESULTS 
 
A. Results of the Elman Network 
 

We found that training the neural network with a single 
example of two movements was sufficient to achieve good 
generalization across the data set. We trained the network on 
an abrupt right-left movement from one subject along with a 
continuous right-left motion from a second subject. The 
network was then tested against a comprehensive set of 
representative movements from all subjects. The results of 
this test are shown in Figure 1. In this figure, the red solid 
curve corresponds to the actual rotational acceleration 20ms 
in the future. The blue dashed-dotted curve corresponds to the 
predicted angular acceleration as predicted by the neural 
network. Here, a successful prediction would show a large 
amount of overlap between the two curves. This 

representation scheme was used for all of the figures 
presented within the paper, except where noted otherwise. 

Figure 2 displays an enlarged image of the section of the 
curves contained within the solid black rectangle in Figure 1. 
In this figure, the qualitative degree of match between the 
two curves can be seen in greater detail. Clearly, the neural 
network is capable of predicting well even in those areas of 
abrupt changes in angular acceleration.  

 
Figure 1.  Results of Neural Network on Comprehensive Test Set.  

Acceleration (y-axis) during left-righ movements is plotted against time 
(x-axis). 

 
 

Figure 2.  Enlarged Section of Figure 1 (Solid Black Rectangle) 

 
 

In addition to qualitative evaluations of performance, we 
also used the Mean Squared Error (MSE) measurement to 
determine our predictive accuracy. For the data above, the 
MSE was 0.0357. This measure does match our qualitative 
assessment of the predictive ability of the neural network. 
However, the MSE is not entirely effective when assessing 
accuracy of prediction in the temporal domain as is required 
here. We will consider this point in more detail in the next 
section. 
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B. Comparison with Extrapolation Prediction 
 

To the best of our knowledge, the procedure used within 
the InterSense IS-600-series trackers makes use of a second-
order extrapolation scheme in order to predict future angular 
accelerations from current data [InterSense spokesman, 
personal communication]. This extrapolation is achieved 
using the following equation: 

)()1(
2
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Here, t0 is the current time point, and n represents the number 
of milliseconds beyond which we want to extrapolate. The 
equation presented above is based on second-order Taylor 
polynomial approximations. It should be noted that this 
extrapolation method amplifies noise, especially when the 
temporal extrapolation distance is high. To combat this 
problem, we introduced a slight smoothing by using a moving 
average with a small window size (w = 5ms). While this 
removed some of the noise in the resulting prediction curve, a 
large amount of noise remained. 
 
Figure 3.  Comparison of Extrapolation with Nerual Network Prediction 

 
 
 The extrapolation function discussed above was applied 
to the comprehensive dataset mentioned in Part A. The 
angular acceleration data was predicted 20ms in advance, just 
as with the neural network approach. The qualitative results 
of this extrapolation are displayed in Figure 3. In this figure, 
the extrapolation curve was added to the existing curves from 
Figure 1. This curve can be seen as a dotted green curve in 
Figure 3 (as well as in all other figures, except where 
otherwise noted).  
 

Figure 4 presents the detail of the highlighted section of 
Figure 3 (denoted by the black rectangle near the right side of 
the graph).  It can be observed that the extrapolation curve 
contains large amounts of noise, whereas the neural network 
prediction has a much tighter match to the target curve. The 
noise generated by the extrapolation would be revealed 

within a virtual environment as high-frequency jitter. Once 
again, as a more quantitative comparison, the MSE for the 
extrapolation was calculated to be 0.0502. This is 
significantly higher than the error generated by the neural 
network system, but as we mentioned earlier, the MSE is not 
sensitive to temporal pattern matches.  In the context of this 
work, the temporal pattern of the curves carries a significant 
amount of the predicted information. 
 

Figure 4.  Enlarged Section of Figure 3 (Solid Black Rectangle) 

 
 

Figure 5.  Comparison of Low Frequency Information.  
Energy (y-axis) vs frequency (x-axis, not in Hz due to subsampling) 

 
 

 In an effort to overcome a similar problem, Liang, et al, 
turned to the frequency domain to compare different curves 
[5]. We chose to do a similar qualitative comparison for our 
results. In this way we can qualitatively assess the results not 
only spatially, but also spectrally. Figure 5 displays the low 
frequency information of each of the three curves from 
Figure 3. Essentially, Figure 5 reveals that both the neural 
network prediction and the extrapolation match closely with 
the actual angular acceleration curve within the low 
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frequency domain. However, when we consider high 
frequency information, as in Figure 6, we see that the 
extrapolation procedure generates considerable error.  It is 
within this range that abrupt acceleration changes would 
occur and where other methods have failed to produce 
accurate prediction.  It can be observed that the neural 
network prediction achieves a significant improvement over 
the extrapolated results. 

 
 

Figure 6.  Comparison of High Frequency Information 

 
 

IV. CONCLUSIONS 
 
 The Elman-based neural network system presented here 
has been shown to predict future angular velocities with a 
high degree of accuracy. The qualitative results show that, 
given a small representative sample of movements, the 
Elman-based system can effectively generalize to predict 
across subjects and movement types. When compared with 
the current extrapolation methods built into head-tracking 
devices, we have demonstrated that a neural network system 
tends to produce increased accuracy. 
 The need for quantitative measures of error in this type of 
domain is a important research issue. In the absence of a true 
measure of temporal error, we introduced another qualitative 
measurement based on the work of Liang et al [5] that makes 
use of the frequency analysis of acceleration curves. While 
this does make an even stronger qualitative statement about 
the high frequency error of an extrapolation system, it does 
not give us a true quantitative measure of error between the 
predicted and actual angular accelerations. Ongoing research 
is targeted toward finding a set of quantitative measures 
necessary for further validation. 
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